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1.    INTRODUCTION 

Both Picard's and Newton's methods have been the subject of recent 

investigations by Schroder,   Kalaba,   Collatz et al. 

The results obtained seem to hold some promise for the iterative 

solution of the Euler-Lag range boundary value problem in variational problems 

The present outline surveys,   in moderate generality,   three methods 

making use of the  concept of partial order: 

1) An extension of Picard's method in which Lipschitz constants 
become operators and the concept of contraction      is generalized. 

2) An extension of Picard's method using monotone properties and 
the Schauder fixpoint theorem,   dispensing with Lipschitz con- 
ditions entirely. 

3) An extension of Newton's method using convexity,   resulting in 
maximum-minimum principles  and dispensing with second 
derivatives . 

2.    SPACES 

2. 1    P-Spaces 

A real Banach space TT will be called a P-space if a relation <    is 

defined between some pairs of points and has  the following properties for 

all x, y, z, u, v in   7T    .     T > denotes the converse of relation < 

x <   x (1) 

x <  y,   y <• z =^>. x < z (2) 

x < y.   y < x=> x = y (3) 

x > O   =£> c x > O     for c real positive (4) 
IT                                             TT                                           r y      ' 

x > y,   u >  v => x+u>y + v (5) 

O/  x  <y   =>||x||<  ||y|| (6) 

lim       x    = x,   x    > O    => x  > O (7) n               n          TT                      TT v   ' n— co 
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Positive cone;    These conditions amount to saying that C =  {x : x  > (\ } 

is a closed convex cone in TT which remains convex when 0Tis removed 

and such that for all x in  TT 

(y :   l|y|| <   llxl! )   0   {x + z:zeC}   =  <J>     (the empty set) (8) 

then 

x <• y  <£^>y -xcC 

Intervals:    [x, yl  =   {z  : x < z < y}   is called the interval between x and y. 

Then 

[x,y]  is closed,   convex and bounded (9) 

x < y <=>[x,y] / $ (10) 

[x, y] =   {x + z : zeC}   n   {y " u : ue  C} (11) 

2.2   Q-Spaces 

A real vector space S will be called a Q-space if there are,   associated 

to S 

a) a P space TT 

b) a function N,   called partial norm,   mapping S into  TT and such that, 
for x, y e S the following four conditions be satisfied: 

N(x)= O^  <=> x= Qj (12) 

N(cx) =    |c |   N(x)     for all real c (13) 

N(x + y)   < N(x) + N(y) (14) 

Let a norm in S be defined by 

ll*lls=  llNWH^ (15) 

then S is a Banach space under this norm.    Comment:  then N is a continuous 

mapping of S into the positive cone C of TT . 

Examples of P-spaces; 

a)    PR    space of vectors x = {%., . . ., g   ) with some norm. 

(§!»•••» fin)  < (ri1 nn)    is defined by 

5- < rii i =  1, . . . , n (16) 



b) PC   [0, 1]   space    of continuous functions f from  [ 0, 1 ]   into PR   , 

with norm 

||f||      =    max||f(t)|| 
0<t<l 

f <: g defined by 

f(t)   «  g(t) in PRn       0 < t < 1 (17) 

Examples of Q-spaces: 

c) QR    space of vectors x= (;    5   ) Associated P-space:    PRn 

Partial norm: 

NWMkJ |SJ) (18) 

d) QC   [0,1]  space of continuous functions from [ 0, 1]  into R 

f = (f^t), .... fn(t)) Associated P-space;    PCn[0, 1]   Partial norm: 

N(f) = (I f j(t) I |fa(t)|) (19) 

e) QC^^O, 1]   as in (d) 

Associated P-space:    PC   [0, 1] Partial norm 

N(f) =  ||f(t)||   .n Rn        a function of t (20) 

f) QCnRn[0, 1]  as in (d)     Associated P-space:   PRn   Partial norm: 

the vector 

N(f) = (   max      |f(t)|,...,     max     |f{t)|) (21) 
0<t<l °<t<1 

g) any real Banach space with  IT as the real line and N as the norm. 

Comment:    The structure of   77"   can be as rich as that of S but may go down 

as far as R   . 

3.    FUNCTIONS 

3. 1   Functions from a P-space into a P-space 

domain   D c 77 

function T : D—   7T 

1 77* , ITy    P-spaces 

Since P-spaces are Banach,   the concepts of linearity,   continuity,   complete 

continuity and (Frechet-) differentiability are defined ipso-facto. 
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Other concepts are: 

Positivity:     x > O       =>    Tx   >  O (22) 

Isotony: x > y => Tx    >  Ty (23) 

Vx, ye D 
Antitony:       x > y=> Tx   * Ty (24) 

Monotony:     Tx  > Ty=>  x   >y (2 5) 

For linear T positivity and isotony are equivalent. 

The usual definition of a convex function requires that the domain D 

be convex and that the range space     77\, be the set of real numbers.     To 

relax the second requirement define 

Convexity:      T is convex if 

a) D is convex 

b) T has a Frechet derivative at every point of D. 

Let T,1   . denote the Frechet derivative at y,   a linear function from    77",  into 
(y) ' 1 

7T2. 

c)   for all x,   y in D 

T(y) <x - y) * Tx - Ty (26> 

Extremization:   For a function F from an arbitrary set A into a P-space, 

define 

m = p m ax   Fa •4=^> 3bf A,  V aj A: Fa <Fb = m (27) 
af A 

and 

pmin Fa =  - pmax (-Fa) 
a eA ae A 

Then (26) can be written 

Tx= pmax (Ty + T;   ,(x - y)) (28) 
yeD *y 

the maximum being attained for x = y. 

Let T be a function mapping a domain D of a Q-space S.   (with partial norm 

3. 2    Functions from Q-spaces into Q-spaces 

Let T be a function mapping a domain '. 

N.   taking its values in P-space   77"  ) into a Q-space S? (with partial norm N? 

*    Note that if a pmax exists its value m is unique,  just as in the real case. 
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taking its values in P-space   77".,). 

Since S    and S, are Banach spaces under the induced norms   11 x 11 <,    = 

|N,X|| llyllr.    =   l|N0y|| the concepts of linearity,   continuity,   complete 
''     1   '' tr-i        M    '' b-,       '      'f2 

continuity and Frechet differentiability are defined. 

Generalized Lipschitz Condition 

The function T is said to be Lipschitz continuous -K on D iff there exists 

a continuous linear positive function K :    77" —»   77"0 such that for all x, y in D 

N2(Ty - Tx)   «  KNjIy - x) (29) 

This implies 

Ty - Tx||       <   ||K||   •   ||y - x|| (30) 
b2 al 

so that T is  then Lipschitz continuous with the constant  ||K||   also. 

Generalized Contraction: 

A function T mapping a domain D of a Q-space S into the same space S 

is a K-contraction on D if it is  Lipschitz continuous K on D and the linear 

function K on the associated P-space 77" satisfies the condition 

2 
x + Kx + K    x   + . . .     converges for all x in 77"       (31) 

It is sufficient to this effect that ||K|| < 1, then T is a contraction in the 

ordinary sense under 11 • 11 ~- It is also sufficient (and necessary) that the 

spectral radius of the linear operator K satisfy 

p(K) < 1 (32) 

4.    THE GENERALIZED PICARD ITERATION 

Problem:   Let T be a function mapping a domain D of a Q-space S (with partial 

norm N taking its values in P-space IT ) into S.    Find an element x of D for 

which x = Tx (a fixpoint). 

Contraction Theorem: 

Let T be a K-contraction on D 

Let x_ be an element of D 

Let x.  =  Tx.    and   r_ = N(x.   - x~) 
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Then the equation 

r - Kr = KrQ (33) 

has a unique solution r* in IT 

If furthermore 

{x : N(x - x  )  < r*}   C  D (34) 

then the sequence x    obtained by 
n 

xn+l = Txn 1= 0,1,2, ... (35) 

(a) exists in D 

(b) converges to a limit x* in D 

(c) x* is  the unique  solution of x =  Tx in D 

(d) an error estimate is given by 

n(x* - xx) < r* (36) 

Application:   If the iteration has been carried out up to the calculation of x  , 

apply the theorem with x     .  as x_. and x      as   x, . rc ' n-1 0 n 1 
Equation (33) need not be solved,   it is sufficient to find b in TT  such 

that r* <• b and use b in (36).    The bound   b   can be found from the condition 

b - Kb  > KrQ (37) 

For instance if   c » 0 and a, (3 real satisfy 

Kc « (3c rQ «QC (3 < 1 

then 

r*<    j-^r     Kc   <    r-^-r    c (38) 

5.    THE MONOTONE PICARD ITERATION 

Problem:   LetT  be a function from a convex domain D in a P-space IT into 

77".    Assume T = T.  + T, with T    isotone on D,   T~ antitone on D.    Find a 

fixpoint   x =  Tx of T in D. 

Method:   Start from 2 elements x_, y_ of D and proceed by 

x = T.  x    + T, y 
n+1 In 2  ' n 

(39) 
y xi = Ti y  + T, x ' n+ 1 1 •' n 2 n 
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Nesting Theorem: 

if [x0-yo] c D   and   xo<xi<yi<yo (40) 

then    (a)   x~ <- x   <•   x    <   . . .   < y    « y    <   y i.e.,   the iteration defines 

a sequence of nested non-empty intervals  [x   , y   ] 

(b)   The image of [x   , y   ]  under T is a subset of f x        , y        1   and a 

fortiori of itself.    Thus any fixpoint in [x., y^l  belongs to [x   ,y  ] 

for all n. 

Fixpoint Theorems: 

A. Finite dimensional case. 

If   IT  is finite dimensional then (39),   (40) imply 

(a) x   —x* and y    — y*    with   x*  <- y* \   /      n 'n      7 ' 

(b) if T.  and T2 are continuous then there exists  a fixpoint 

in [x*,y*|  and a fortiori in [x  , y  1. 

(c) if T.,T2 are linear then -^(x* + y*) is a fixpoint. 

B. Infinite dimensional case. 

(a) If the image of [x   , y  ]  under T is totally bounded it con- 

contains a fixpoint of T. 

(b) If T is completely continuous on [x  ,y   1   then statement 

(a) applies. 

Since intervals are closed,  bounded and convex these proper- 

ties result essentially from the Schauder fixpoint theorem. 

Application:   Solutions of differential equations can often be considered as 

fixpoints of completely continuous integral transformations. 

Note that no Lipschitz constant or operator K need be determined. 

6.    THE MONOTONE NEWTON ITERATION 

Problem:   Let S and S. be P-spaces and V a real vector space.     Let L be 

a linear and F a non-linear function from a domain D in S into S.  and G a 

linear function from D into V.    Let c be a given element of V.    Find x in D 

such that 

Lx = Fx 
(41) 

Gx = c 
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Assumptions: 

a) D is convex 

b) there exists a linear function R from S    to S such that   ||R|| < 7 

and RLx = x for xf D fl  {y : Gy = c) 

c) F has a bounded Frechet derivative on D 

11 F'    11 < p,     for x e D II      (x)ll    _  H. 

d) F is convex on D 

e) || Fx|| <  a + p||x||     for x E D 

*)    T((3 + 2^)<1 

g)    I    4    {x: I|*|| <  ||x0||.   ||x|l<    t.^^lCD 
h)    LxQ >  FxQ 

i)   GxQ = c 

j)    Lx » F'    x and Gx = Gy => x   > O 

k)   For all x  e D there exists a unique solution y of the linear equations 

Ly = Fx + Fjx)(y - x) 

(42) 
Gy = c 

This defines a function T from D into S by y =  Tx. 

1)    (41) has a solution x* in D. 

m) x_ and x    = Tx    are in D. 

Newton's Method: 

Under assumptions (c) and (k) starting from an element x_ in D attempt 

the iteration 

x = Tx n+1 n 

which is possible as long as the iterates stay in D. 

Monotone Property: 

Under assumptions (a) (c) (d) (j) (k) 

x   , .  > x for       n > 1 
n+1 '     n — 

Maximum Principle: 

Under assumptions (a) (c) (d) (j) (k) (1) (m) 

x* = pmax     Tx (43) 
x e D 
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Interval Property: 

Under assumptions (a) (c) (d) (h) (j) (k) (1) (m) 

x    <•   x*  < x (44) 

Minimum Principle: 

Under assumptions (a) (c) (d) (j) (k) (1) (m) 

x* = pmin xn 

subject to x. f D and Lx_  > Fxn 

(45) 

Boundedness  Property 

Under assumptions (a) (b) (c) (d) (e) (f) (g) (j) (k) and x  » x    the 

sequence x^, x   , x    exists,   is monotone increasing and contained in   2 
0      1      n 

In finite dimension this implies convergence to a solution of the problem, 

In infinite dimension convergence follows  only if the sequence can 

be  shown to be sequentially compact (as when T is  completely continuous). 

Otherwise,   for instance in PC [0, 1]   only pointwise convergence follows. 

7. BOUNDARY VALUE PROBLEMS 

x = A(t)x + F(x, t) F,   c,  x   n-vectors 
(46) 

Nx(0) + Mx(l) = c A(t),   N,   M   nbyn matrices 

Let $(t) be a fundamental matrix,   a non-singular solution of 

$(t) = A(t) *(t) 

Assume Nf(0) + M$(l) is non-singular.    Then the solution of 

x =  A(t) x + f(t) 
(47) 

Nx(0) + Mx(l) = c 

is for 0 < t < 1 
1 

x(t) = G^t) c +     J    G(t, T) f(x) dx (48) 

where 
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Gj(t) = *{t)[N*(0) + M«>(1)] 

G(t, T) =   < 
G^t) N$(0)  $     (T)        for T < t 

-Gj(t) M$(l) $
_1

(T)     for T > t 

(49) 

(the value for t = T is immaterial) 

The solution of the non-linear problem,   if one exists,   is a continuous func- 

tion x(t) satisfying 

1 

x(t)=G1(t)c+      f G(t, T) F(X(T), T) dT (50) 

0 

i.e. ,   it is a fixpoint x = Tx of the mapping T from the space of continuous 

R   -valued functions on [0, 11   into itself defined by (50). 

Taking any norm in R    and the maximum over 0 < t < 1 of this norm 

as  the function space norm the function T is completely continuous in many 

cases. 

Thus the iterative methods can often be applied. 

Example:   (Collatz) 

x =  -t -   yx" x(0) =  0       x(l) =   1 

There is no Lipschitz constant for this problem but the iteration, 

is isotone with 

x(t) <r y(t) <^>x(t) < y(t)  V  te [0, 1] 

and is completely continuous 

Taking x0= t -it- t3/3 
T      3 

<•>   /r     n2 23 *      8 *5/2 
y0 = (2 -/t  -   t)       y, = -     t - I-*-1 1 "T5     "IB- 

Then xQ <• x    <  y   <   y    and x  (t)< x*(t) < y,(t)   V   t c [ 0, 1]  for a solution x*, 
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